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1 Introduction
The isotropic elastic wave equation governs the propagation of seismic waves caused by
earthquakes and other seismic events. It also governs the propagation of waves in solid
material structures and devices, such as gas pipes, wave guides, railroad rails and disc
brakes. In the vast majority of wave propagation problems arising in seismology and
solid mechanics there are free surfaces. These free surfaces have, in general, complicated
shapes and are rarely flat.

Another feature, characterizing problems arising in these areas, is the strong hetero-
geneity of the media, in which the problems are posed. For example, on the characteristic
length scales of seismological problems, the geological structures of the earth can be con-
sidered piecewise constant, leading to models where the values of the elastic properties
are also piecewise constant. Large spatial contrasts are also found in solid mechanics
devices composed of different materials welded together.

The presence of curved free surfaces, together with the typical strong material het-
erogeneity, makes the design of stable, efficient and accurate numerical methods for the
elastic wave equation challenging. Today, many different classes of numerical methods
are used for the simulation of elastic waves. Early on, most of the methods were based
on finite difference approximations of space and time derivatives of the equations in sec-
ond order differential form (displacement formulation), see for example [1, 2]. The main
problem with these early discretizations were their inability to approximate free surface
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boundary conditions in a stable and fully explicit manner, see e.g. [10, 11, 18, 20]. The
instabilities of these early methods were especially bad for problems with materials with
high ratios between the P-wave (Cp) and S-wave (Cs) velocities.

For rectangular domains, a stable and explicit discretization of the free surface bound-
ary conditions is presented in the paper [17] by Nilsson et al. In summary, they introduce
a discretization, that use boundary-modified difference operators for the mixed deriva-
tives in the governing equations. Nilsson et al. show that the method is second order
accurate for problems with smoothly varying material properties and stable under stan-
dard CFL constraints, for arbitrarily varying material properties.

In this paper we generalize the results of Nilsson et al. to curvilinear coordinate sys-
tems, allowing for simulations on non-rectangular domains. Using summation by parts
techniques, we show that there exists a corresponding stable discretization of the free
surface boundary condition on curvilinear grids. We also prove that the discretization
is stable and energy conserving both in semi-discrete and fully discrete form. As for
the Cartesian method in, [17], the stability and conservation results holds for arbitrarily
varying material properties. By numerical experiments it is established that the method is
second order accurate.

The strengths of the proposed method are its ease of implementation, its (relative
to low order unstructured grid methods) efficiency, its geometric flexibility, and, most
importantly, its ”bullet-proof” stability. On the downside, the main drawback of the sug-
gested method is that it is only second order accurate. For wave propagation problems
with smoothly varying material properties, it has been known for a long time [14] that
low (2nd) order finite difference methods are less efficient than higher (4th or more) or-
der finite difference methods. When the material properties are only piecewise smooth
(as e.g. in seismology), the difference in efficiency between high and low order accu-
rate finite difference methods is not as pronounced, see e.g. [4, 9]. For such problems
the formal order of accuracy (for both high and low order methods) is reduced to one,
but as has been shown in [4], the higher order methods produce more accurate results.
Although we believe that the present method is reasonably competitive for strongly het-
erogeneous materials, it would be of great interest to derive a similarly ”bullet-proof”
fourth or higher order accurate method.

There are of course many other numerical methods capable of handling general ge-
ometries. Two recent finite difference methods, are the traction image method for curvi-
linear grids [21] and the embedded boundary method by Lombard et al. described in [15].
Especially the latter appear to be promising. Being an embedded boundary method it
rids itself of the need to generate complicated meshes, a task that can be cumbersome
for large scale problems that need to be run on large parallel computers. In comparison
to the embedded boundary method of Lombard et al., the proposed method will work
best for problems where most of the computations take place close to a surface (where
an embedded boundary method have a large overhead) while the embedded boundary
method work well for problems with large volume to surface ratio. Regarding the stabil-
ity of the methods in [15, 21], there are no theoretical results described in the papers (in
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the latter stability is tested in a long-time simulation).
Other methods include the well-established spectral element method [7,13], the pseu-

dospectral method [8] and the discontinuous Galerkin method [12]. For homogeneous
materials these methods can, in principle, be made arbitrary accurate as the order n of
the polynomial approximation increases. This property together with the geometrical
flexibility of unstructured methods make spectral element and discontinuous Galerkin
methods attractive for simulation of elastic waves in complex geometries. Unfortunately,
the spectral radius of the discretized (with mesh size h) spatial operator scale as n3/h for
spectral elements and pseudospectral methods; and as n2/h for discontinuous Galerkin
methods. Thus, compared to finite difference methods whose spectral radius scale as
n/h, the time stepping restrictions are rather severe (in practice this limits the order of
approximation that can be used). As for finite difference methods, the formal order of
these methods will be reduced to first order if material discontinuities are not aligned
with element boundaries, see [6, 9].

The rest of the paper is organized as follows: In §2 we state the governing equations
and boundary conditions in Cartesian and curvilinear coordinates. We also describe a
problem setup, which is used in §3 to illustrate the proposed numerical method. In §3 we
introduce the proposed numerical method, and prove several results concerning its sta-
bility and conservation properties. Both the semi-discrete and fully discretized versions
of the method are discussed. We also comment on how to extend the method to three
dimensions. In §4 we give several numerical examples in two and three dimensions.
We verify the order of the method and its discrete conservation properties for arbitrarily
varying materials. Finally, in §5 we summarize and conclude.
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Figure 1: The Geometry. The free surface closest to x=0 is mapped onto to q=0 and the one closest to y=0
is mapped onto r =0.



4

2 The governing equations
Consider the propagation of elastic waves in a non-rectangular domain like the one de-
picted to the left in Figure 1. In a Cartesian coordinate system (the x−y system to the left
in Figure 1) the elastic wave equation, without external forcing, takes the form

ρ
∂2u
∂t2 =

∂

∂x

(
(2µ+λ)

∂

∂x u+λ
∂

∂y v
)

+
∂

∂y

(
µ

(
∂

∂x v+
∂

∂y u
))

, (2.1)

ρ
∂2v
∂t2 =

∂

∂x

(
µ

(
∂

∂x v+
∂

∂y u
))

+
∂

∂y

(
λ

∂

∂x u+(2µ+λ)
∂

∂y v
)

. (2.2)

Here u and v are the displacements in the x and y directions. The Lamé parameters,
µ = µ(x,y) and λ = λ(x,y) and the density ρ = ρ(x,y), are restricted to be real valued
positive functions, but are allowed to vary arbitrarily in space. The equations (2.1) - (2.2)
are augmented by the initial data

u(x,y,0)=u0(x,y), v(x,y,0)=v0(x,y),
∂u(x,y,0)

∂t =u1(x,y), ∂v(x,y,0)

∂t =v1(x,y).

To close the problem we need to specify boundary conditions and in this paper we
consider three types of boundary conditions: free surface, Dirichlet and periodic bound-
ary conditions. For simplicity, we first describe a case where only side Γ1 (where q=0) is
a free surface; later on (see §3.4) we describe how to discretize cases where two or more
free surfaces are present.

On the free surface Γ1 we impose the boundary conditions
[

(2µ+λ) ∂u
∂x +λ ∂v

∂y µ( ∂v
∂x + ∂u

∂y )

µ( ∂v
∂x + ∂u

∂y ) (2µ+λ) ∂v
∂y +λ ∂u

∂x

][
nx
ny

]
=0. (2.3)

Here (nx,ny) is the inward normal of Γ1. On the sides Γ2, Γ4 we impose periodic boundary
conditions and on Γ3 we impose homogeneous Dirichlet boundary conditions

u|Γ3 =v|Γ3 =0. (2.4)

2.1 The elastic wave equation in a curvilinear coordinate system
Before we discretize (2.1), (2.2) the governing equations and the boundary conditions are
transformed to a curvilinear coordinate system that conforms with the boundaries of the
domain, see Figure 1.

Assume that there is a one to one mapping

x(q,r),y(q,r), (q,r)∈ [0,1]2 ,
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from the unit square to the domain confined by Γ1,Γ2,Γ3,Γ4. By the chain rule we have
the relations

∂x =qx∂q+rx∂r, ∂y =qy∂q +ry∂r , ∂q = xq∂x +yq∂y, ∂r = xr∂x +yr∂y, (2.5)

were qx denotes ∂q(x,y)
∂x etc. and are referred to as metric derivatives or simply the metric.

Inverting (2.5) we find the metric derivatives
[

qx rx
qy ry

]
=

1
J

[
yr −yq
−xr xq

]
,

were J = xqyr−xryq is the Jacobian of the mapping.
Utilizing (2.5) the equations (2.1) and (2.2) are transformed into (for details see e.g

[19])

Jρ
∂2u
∂t2 =

∂

∂q
[

Jqx
[
(2µ+λ)

(
qx∂q +rx∂r

)
u+λ

(
qy∂q+ry∂r

)
v
]

+ Jqy
[
µ
((

qx∂q+rx∂r
)

v+
(
qy∂q+ry∂r

)
u
)]]

+
∂

∂r
[

Jrx
[
(2µ+λ)

(
qx∂q+rx∂r

)
u+λ

(
qy∂q+ry∂r

)
v
]

+ Jry
[
µ
((

qx∂q +rx∂r
)

v+
(
qy∂q+ry∂r

)
u
)]]

, (2.6)

Jρ
∂2v
∂t2 =

∂

∂q
[

Jqx
[
µ
((

qx∂q +rx∂r
)

v+
(
qy∂q+ry∂r

)
u
)]

+ Jqy
[
(2µ+λ)

(
qy∂q+ry∂r

)
v+λ

(
qx∂q+rx∂r

)
u
]]

+
∂

∂r
[

Jrx
[
µ
((

qx∂q+rx∂r
)

v+
(
qy∂q+ry∂r

)
u
)]

+ Jry
[
(2µ+λ)

(
qy∂q+ry∂r

)
v+λ

(
qx∂q +rx∂r

)
u
]]

. (2.7)

Similarly, the free surface boundary conditions are transformed into

q̄x
[
(2µ+λ)(qx uq+rxur)+λ(qyvq +ryvr)

]
+ q̄yµ((qxvq +rxvr)+(qyuq+ryur)) = 0, (2.8)

q̄xµ((qxvq+rxvr)+(qyuq+ryur))+ q̄y
[
(2µ+λ)(qxvq +rxvr)+λ(qyuq+ryur)

]
= 0. (2.9)

Note that the normal is now represented by the normalized metric

q̄x =
qx√

q2
x +q2

y
, q̄y =

qy√
q2

x +q2
y

.

We now proceed with the discretization of equations (2.6)- (2.7) and boundary conditions
(2.8)- (2.9).
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3 A self -adjoint discretization of the elastic wave equation on a
curvilinear grid

To approximate (2.6) and (2.7) we cover the unit square with the grid

qi =(i−1)hq , i=0,...,Nq, hq =1/(Nq−1),
rj =(j−1)hr , j=0,...,Nr +1, hr =1/(Nr−1).

Here the grid indexes (i, j)∈ [1,Nq−1]×[1,Nr ] belong to interior points where (2.1), (2.2)
are approximated and the rest belong to points that are assigned by enforcing the bound-
ary conditions. On this grid we introduce the real valued grid functions [u i,j,vi,j] =
[u(qi,rj,t),v(qi ,rj,t)] and the standard the difference operators

Dq
+ui,j =

ui+1,j−ui,j
hq

, Dq
−ui,j = Dq

+ui−1,j,

Dr
+ui,j =

ui,j+1−ui,j
hr

, Dr
−ui,j = Dr

+ui,j−1,

Dq
0ui,j =

1
2 (Dq

+ui,j +Dq
−ui,j), Dr

0ui,j =
1
2 (Dr

+ui,j+Dr
−ui,j),

as well as the boundary modified operator

D̃q
0ui,j =

{
Dq

+ui,j, i=1,
Dq

0ui,j, i≥2.

We also introduce the averaging operators

Eq
1/2(σi,j)=

1
2 (σi+1,j +σi,j), Er

1/2(σi,j)=
1
2 (σi,j+1+σi,j).

3.1 The spatial discretization
We approximate the spatial operators in equations (2.6) and (2.7) by (the grid indexes
have been suppressed to increase the readability)

Jρ
∂2u
∂t2 = Dq

−Eq
1/2(Jqxqx(2µ+λ))Dq

+u+D̃q
0(Jqxrx(2µ+λ))Dr

0u+Dq
−Eq

1/2(Jqxqyλ)Dq
+v

+D̃q
0(Jqxryλ)Dr

0v+Dq
−Eq

1/2(Jqyqxµ)Dq
+v+D̃q

0(Jqyrxµ)Dr
0v+Dq

−Eq
1/2(Jqyqyµ)Dq

+u

+D̃q
0(Jqyryµ)Dr

0u+Dr
0(Jrxqx(2µ+λ))D̃q

0u+Dr
−Er

1/2(Jrxrx(2µ+λ))Dr
+u

+Dr
0(Jrxqyλ)D̃q

0v+Dr
−Er

1/2(Jrxryλ)Dr
+v+Dr

0(Jryqxµ)D̃q
0v+Dr

−Er
1/2(Jryrxµ)Dr

+v

+Dr
0(Jryqyµ)D̃q

0u+Dr
−Er

1/2(Jryryµ)Dr
+u≡L(u)(u,v). (3.1)
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Jρ
∂2v
∂t2 = Dq

−Eq
1/2(Jqxqxµ)Dq

+v+D̃q
0(Jqxrxµ)Dr

0v+Dq
−Eq

1/2(Jqxqyµ)Dq
+u+D̃q

0(Jqxryµ)Dr
0u

+Dq
−Eq

1/2(Jqyqxλ)Dq
+u+D̃q

0(Jqyrxλ)Dr
0u+Dq

−Eq
1/2(Jqyqy(2µ+λ))Dq

+v

+D̃q
0(Jqyry(2µ+λ))Dr

0v+Dr
0(Jrxqxµ)D̃q

0v+Dr
−Er

1/2(Jrxrxµ)Dr
+v+Dr

0(Jrxqyµ)D̃q
0u

+Dr
−Er

1/2(Jrxryµ)Dr
+u+Dr

0(Jryqxλ)D̃q
0u+Dr

−Er
1/2(Jryrxλ)Dr

+u+Dr
0(Jryqy(2µ+λ))D̃q

0v
+Dr

−Er
1/2(Jryry(2µ+λ))Dr

+v≡L(v)(u,v), (3.2)

in the grid points (qi,rj), (i, j)∈ [1,Nq−1]×[1,Nr ]. The discrete boundary conditions corre-
sponding to (2.4) are

uNq,j =0
vNq,j =0

}
for j=1,...,Nr, (3.3)

and the periodic boundary conditions are wi,j =wi,j+Nr ,w=u,v and can be used to specify

ui,0 =ui,Nr , ui,Nr+1 =ui,1,
vi,0 =vi,Nr , vi,Nr+1 =vi,1,

}
for i=0,...,Nq, (3.4)

Finally, as we are about to show, stable second order accurate approximations of the free
surface boundary conditions (2.8), (2.9) are given by

1
2
(
(Jqxqx(2µ+λ))3/2,j D

q
+u1,j +(Jqxqx(2µ+λ))1/2,j D

q
+u0,j

)
+(Jqxrx(2µ+λ))1,j Dr

0u1,j

+
1
2
(
(Jqxqyλ)3/2,jD

q
+v1,j +(Jqxqyλ)1/2,jD

q
+v0,j

)
+(Jqxryλ)1,jDr

0v1,j

+
1
2
(
(Jqyqxµ)3/2,jD

q
+v1,j +(Jqyqxµ)1/2,jD

q
+v0,j

)
+(Jqyrxµ)1,jDr

0v1,j

+
1
2
(
(Jqyqyµ)3/2,jD

q
+u1,j+(Jqyqyµ)1/2,jD

q
+u0,j

)
+(Jqyryµ)1,jDr

0u1,j =0, for j=1,...,Nr ,
(3.5)

1
2
(
(Jqxqxµ)3/2,j D

q
+v1,j +(Jqxqxµ)1/2,jD

q
+v0,j

)
+
(
(Jqxrxµ)1,j Dr

0v1,j
)

+
1
2
(
(Jqxqyµ)3/2,jDq

+u1,j+(Jqxqyµ)1/2,j Dq
+u0,j

)
+
(
(Jqxryµ)1,jDr

0u1,j
)

+
1
2
(
(Jqyqy(2µ+λ))3/2,j Dq

+v1,j +(Jqyqy(2µ+λ))1/2,j Dq
+v0,j

)
+
(
(Jqyry(2µ+λ))1,j Dr

0v1,j
)

+
1
2
(
(Jqyqxλ)3/2,jD

q
+u1,j+(Jqyqxλ)1/2,j D

q
+u0,j

)
+
(
(Jqyrxλ)1,jDr

0u1,j
)
=0, for j=1,...,Nr .

(3.6)
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Remark 1. The key ingredient in obtaining a stable self-adjoint explicit discretization is to
use the one-sided operator D̃q

0 for the approximation of the normal derivative in the ∂q∂r
and ∂r∂q cross derivatives. At first, it might appear that by using the one-sided operator
the order of the method would be reduced. However, as was theoretically shown in [17]
(for a Cartesian discretization) and will be shown by numerical experiments below the
discretization produce second order accurate solutions.

Remark 2. The above discretization does not depend on how the metric derivatives are
computed. If the mapping is known explicitly they can be computed analytically, if not
they can be computed numerically. In all numerical examples presented in this paper the
metric derivatives are computed numerically using second order accurate finite differ-
ence approximations.

3.2 Some lemmata about the discretization
In this subsection we state and prove the main properties of the discretization. We begin
by defining a suitable discrete inner product. Let w and u be real valued grid functions
and (w,u)h be the discrete inner product

(w,u)h =hqhr
Nr

∑
j=1

(
1
2 w1,ju1,j+

Nq

∑
i=2

wi,jui,j

)
,

with corresponding norm ‖w‖2
h =(w,w)h. For the present discretization we have.

Lemma 1 (Self adjointness of the spatial discretization). For all real-valued grid func-
tions (u0,v0), (u1,v1) satisfying the discrete boundary conditions (3.3), (3.4), (3.5), (3.6),
the spatial operator (L(u),L(v)) is self-adjoint, i.e.

(u0,L(u)(u1,v1))h +(v0,L(v)(u1,v1))h =(u1,L(u)(u0,v0))h +(v1,L(v)(u0,v0))h. (3.7)

Proof. Our first step is to show that (u0,L(u)(u1,v1))h =(u1,L(u)(u0,v0))h, we will do this
by transferring ”half” of the difference approximations (to the right in the inner products)
onto the solitary u0 or u1 to the left in the inner products. To do this we use the following
summation by part identities

(Dr
+w,u)h +(w,Dr

−u)h =0,
(Dr

0w,u)h +(w,Dr
0u)h =0,

(w,Dq
+u)h +(Dq

−w,u)h =−
hr
2

Nr−1

∑
j=1

(
w0,ju1,j+w1,ju2,j

)
+hr

Nr

∑
j=1

wNq−1,juNq,j,

(w,D̃q
0u)h+(D̃q

0w,u)h =−hr
Nr

∑
j=1

w1,ju1,j +
hr
2

Nr

∑
j=1

(
wNq,juNq−1,j+wNq−1,juNq,j

)
.

(3.8)
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We illustrate the ideas of the proof on the first two terms the inner product (u0,L(u)(u1,v1))h.
Starting with the first ∂q∂q term, Dq

−Eq
1/2(Jqxqx(2µ+λ))Dq

+u, we apply the above summa-
tion by parts identities and find

(u0,Dq
−Eq

1/2(Jqxqx(2µ+λ))Dq
+u1)=−(Dq

+u0,Eq
1/2(Jqxqx(2µ+λ))Dq

+u1)

+hr
Nr

∑
j=1

u0
Nq,j(Jqxqx(2µ+λ))Nq−1/2,jD

q
+u1

Nq−1,j

︸ ︷︷ ︸
A1

−
hr
2

Nr

∑
j=1

(
u0

2,j(Jqxqx(2µ+λ))3/2,j D
q
+u1

1,j+u0
1,j(Jqxqx(2µ+λ))1/2,j D

q
+u1

0,j

)

︸ ︷︷ ︸
B1

.

The homogeneous Dirichlet boundary condition on Γ3 is u0
Nq,j =0 thus the term A1 van-

ishes, leaving only the boundary contribution B1. To get an expression for B1 where u0
1,j

multiplies the terms containing Dq
+ (which is an approximation of the qx(2µ+λ)uq part

of the boundary condition) we use the identity u0
2,j =u0

1,j+hqDq
+u0

1,j and obtain

B1 =−
hr
2

Nr

∑
j=1

u0
1,j

(
(Jqxqx(2µ+λ))3/2,j D

q
+u1

1,j +(Jqxqx(2µ+λ))1/2,j D
q
+u1

0,j

)

︸ ︷︷ ︸
B1(u0,u1,v0,v1)

−
hrhq

2
Nr

∑
j=1

Dq
+u0

1,j(Jqxqx(2µ+λ))3/2,j D
q
+u1

1,j

︸ ︷︷ ︸
b1

.

The term b1 is symmetric in u0,u1 and there is an identical contribution, canceling b1, from
the first term in (u1,L(u)(u0,v0))h.

For the second term, D̃q
0(Jqxrx(2µ+λ))Dr

0u1, in (u0,L(u)(u1,v1))h the above identities
are used again to obtain

(u0,D̃q
0(Jqxrx(2µ+λ))Dr

0u1)=−(D̃q
0u0,(Jqxrx(2µ+λ))Dr

0u1)

+
hr
2

Nr

∑
j=1

(
u0

Nq−1,j(Jqxrx(2µ+λ))Nq ,jDr
0u1

Nq,j+u0
Nq,j(Jqxrx(2µ+λ))Nq+1,jDr

0u1
Nq−1,j

)

︸ ︷︷ ︸
A2

−hr
Nr

∑
j=1

u0
1,j

(
(Jqxrx(2µ+λ))1,j Dr

0u1
1,j

)

︸ ︷︷ ︸
B2(u0,u1,v0,v1)

.
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We note that u1
Nq,j =0 implies Dr

0u1
Nq,j =0 and thus the boundary term A2 vanishes.

The six remaining of the first eight terms in (u0,L(u)(u1,v1))h gives the same type of
contributions and the last eight terms will not give any boundary contributions because
of the periodicity in the r direction.

Repeating the above steps for (u1,L(u)(u0,v0))h give the same kind of boundary terms
(the arguments of Bk are ordered differently, namely Bk(u1,u0,v1,v0)). From (v0,L(v)(u1,v1))h
and (v1,L(v)(u0,v0))h there will also be boundary terms, which we denote Ck(u0,u1,v0,v1)
and Ck(u1,u0,v1,v0) respectively. Subtracting the right hand side of the left hand side of
equation (3.7) results in the equality

(u0,L(u)(u1,v1))h−(u0,L(u)(u1,v1))h +(v0,L(v)(u1,v1))h−(v0,L(v)(u1,v1))h =

8
∑
k=1

Bk(u0,u1,v0,v1)−
8

∑
k=1

Bk(u1,u0,v1,v0)+
8

∑
k=1

Ck(u0,u1,v0,v1)−
8

∑
k=1

Ck(u1,u0,v1,v0). (3.9)

The first term on the right hand of (3.9) side is

8
∑
k=1

Bk(u0,u1,v0,v1)=−
Nr

∑
j=1

u0
1,j

[1
2
(
(Jqxqx(2µ+λ))3/2,j D

q
+u1

1,j+(Jqxqx(2µ+λ))1/2,j D
q
+u1

0,j

)

+(Jqxrx(2µ+λ))1,j Dr
0u1

1,j+
1
2
(
(Jqxqyλ)3/2,jDq

+v1
1,j +(Jqxqyλ)1/2,j Dq

+v1
0,j

)

+(Jqxryλ)1,jDr
0v1

1,j +
1
2
(
(Jqyqxµ)3/2,jD

q
+v1

1,j +(Jqyqxµ)1/2,j D
q
+v1

0,j

)

+(Jqyrxµ)1,j Dr
0v1

1,j +
1
2
(
(Jqyqyµ)3/2,jD

q
+u1

1,j +(Jqyqyµ)1/2,jD
q
+u1

0,j

)
+(Jqyryµ)1,jDr

0u1
1,j

]
.

(3.10)

The factor within the square brackets multiplying u0
1,j is identical to the boundary condi-

tion (3.5) and therefore vanishes. The second term of (3.9) also vanishes due to (3.5) and,
finally, the third and fourth terms vanishes due to the boundary condition (3.6). This
finalizes the proof.

A direct consequence of lemma 1 is the following corollary.

Corollary 1 (Conservation of energy). All real-valued solutions (u,v) to the equations
(3.1), (3.2) with boundary conditions (3.3), (3.4), (3.5) and (3.6), satisfy

‖
√

Jρut‖
2
h +‖

√
Jρvt‖

2
h−(u,L(u)(u,v))h−(v,L(v)(u,v))h =C. (3.11)

Here C is a constant depending only on the initial data.
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Proof. Lemma 1 gives

1
2

d
dt
(
‖
√

Jρut‖
2
h +‖

√
Jρvt‖

2
h

)
=

1
2
(
(ut,L(u)(u,v))h +(vt,L(v)(u,v))h +(u,L(u)(ut,vt))h +(v,L(v)(ut,vt))h

)
=

1
2

d
dt
(
(u,L(u)(u,v))h +(v,L(v)(u,v))h

)
.

Integrating in time we arrive at (3.11).

For the quantity in (3.11) to be an energy we need the following result.

Lemma 2 (Ellipticity). For all real-valued grid functions (u,v) satisfying the discrete
boundary conditions (3.3), (3.4), (3.5), (3.6), the spatial operators L(u)(u,v) and L(v)(u,v)
satisfy

−(u,L(u)(u,v))h−(v,L(v)(u,v))h =P1+P2+P3+P4, (3.12)

with (the exact expressions can be found in appendix A)

P1≥0, P2≥0, P3≥0, P4≥0.

Proof. The equality (3.12) is derived by using the following summation by parts identities

(u,Dr
−Er

1/2(σ)Dr
+v)h =−(Dr

0u,Dr
0v)h︸ ︷︷ ︸

t1

−
h2

r
4 (Dr

+Dr
−u,σDr

+Dr
−v)h

︸ ︷︷ ︸
t2

,

(u,Dq
−Eq

1/2(σ)Dq
+v)h =−(Dq

0u,Dq
0v)h︸ ︷︷ ︸

t3

−
h2

q
4 (Dq

+Dr
−u,σDq

+Dq
−v)hr

︸ ︷︷ ︸
t4

+hr
Nr

∑
j=1

(
−

1
2σ1/2,ju1,jDq

+v0,j−
1
2σ3/2,ju2,jDq

+v1,j
︸ ︷︷ ︸

t5

+
σNq,j

2 uNq−1,jDq
+uNq−1,j

︸ ︷︷ ︸
t6

+
σNq−1,j

2 uNq,jDq
+uNq−1,j

︸ ︷︷ ︸
t7

)
,

together with the identities (3.8). Here the inner product (w,v)hr is defined as

(w,u)h =hqhr
Nr

∑
j=1

Nq

∑
i=2

wi,jui,j.

The corresponding norm is ‖w‖2
hr =(w,w)hr .
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To verify (3.12), terms of the type t1 and t3 are collected into P1 and terms of type
t2 and t4 into P2. The t7 and one part of the t6 terms vanishes due to the homogeneous
Dirichlet boundary conditions (3.3), the remaining contribution from the t6 term goes into
P3. Using u2,j =u1,j+hqDq

+u1,j on the t5 term gives the contributions of P4. Collecting all
the remaining boundary terms gives an expression identical to (3.10) (with u0 = u1 = u)
and another term identical to the expression corresponding to (3.10) for the second free
surface boundary condition (3.6). As the free surface boundary conditions are assumed
to hold, the lemma is proved.

3.3 Temporal discretization
In time we discretize using second order accurate centered differences. The fully discrete
equations are

un+1−2un+un−1 =(ρJ)−1k2L(u)(un,vn),
vn+1−2vn +vn−1 =(ρJ)−1k2 L(v)(un,vn).

(3.13)

For the fully discrete equations it can be shown that the following lemma holds.

Lemma 3.1 (Discrete conservation of energy). Let (u,v)ρJ be the weighted inner product
defined by ( f ,g/(ρJ))ρJ =( f ,g)h , and let Ce(tn+1) be the discrete energy

Ce(tn+1)=

‖Dt
+un‖2

ρJ +‖Dt
+vn‖2

ρJ−(un+1,(ρJ)−1 L(u)(un,vn))ρJ−(vn+1,(ρJ)−1 L(v)(un,vn))ρJ . (3.14)

If uq,vq,q=n−1,n,n+1 are solutions to (3.13) and satisfy the discrete boundary conditions (3.3),
(3.4), (3.5), (3.6) then

Ce(tn+1)=Ce(tn).

The proof of the lemma is the same as for the Cartesian discretization and can be
found in [17] (theorem 3).

3.4 Corners where free surfaces meet
As was stated above, the key ingredient to obtain a stable and explicit discretization of the
free surface at Γ1 is to use the boundary modified difference operator D̃q

0 for the normal
derivative in the cross derivative terms in the equation. For cases with more than one free
surface we use difference operators that are modified at those other free surfaces as well.
For example, when the boundary Γ4 is changed into a free surface and the boundary Γ2
is changed into a homogeneous Dirichlet boundary, the grid in r is changed to

rj =(j−1)hr , j=0,...,Nr, hr =1/(Nr−1).
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Now the grid indexes (i, j)∈ [1,Nq−1]×[1,Nr−1] belong to interior points. Also, the dis-
cretization of the equations is changed by using the modified operator

D̃r
0ui,j =

{
Dr

+ui,j, j=1,
Dr

0ui,j, j≥2,

instead of Dr
0. Now, at the point (q1,r1) we need to use the free surface boundary con-

ditions on Γ1 to get the values for u0,1 and v0,1 and the free surface boundary conditions
on Γ4 to get the values for u1,0 and v1,0. By repeating the steps in the proofs of the dif-
ferent lemmata it is easy to see that for the self-adjointness and conservation results to
hold we have to modify the discretization of the boundary conditions at the corners. Not
surprisingly, the correct modification consists of replacing Dr

0 by D̃r
0 in (3.1) and (3.2) and

replacing Dq
0 by D̃q

0 in the free surface boundary condition discretization along Γ4. These
modifications, apart from being necessary for stability, are also good from an implemen-
tations point of view because all free surface boundaries can be updated independent of
each other, keeping the method fully explicit.

When implementing the method in a practical computer code it is important to apply
the boundary conditions in the correct order. Given the solution on the two previous time
levels n and n−1 the steps to advance the solution to time level n+1 are the following:

1. Update all Dirichlet b.c.

2. Update all periodic b.c.

3. Update all free-surface b.c.

4. Use equation (3.13) to get the solution at tn+1.

3.4.1 Extension to three dimensions
The extension of the scheme to three dimensions is straightforward. Given a one to one
mapping (x(q,r,s),y(q,r,s),z(q,r,s)),q,r,s∈ [0,1], the three dimensional elastic wave equa-
tion can be formulated in conservative form in the curvilinear coordinate system. The
resulting equations are discretized in the same way as (2.6)- (2.7). Again, if a boundary
has free surface condition, then a modified difference operator is used for the normal
derivative in the cross derivative term in the governing equation. As for the corner case
above, at edges between free surfaces the modified difference operators for the tangen-
tial derivatives in the free surface boundary conditions are used. The same recipe is used for
the tangential derivatives in the boundary conditions in three dimensions corners where
three free surfaces meet.

Remark 3. It is straightforward (but tedious) to show that lemma 1, 2 and corollary 1 in
§3.2 carry over directly to the three dimensional case.
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4 Numerical examples
In this section we present numerical experiments with the numerical method described
above. We start with two verification examples and proceed with four more application
oriented examples, illustrating the versatility of the method.

4.1 Verification: Method of manufactured solution in two dimensions

N maxerr u maxerr v ei/ei+1,u ei/ei+1,v
80 0.16533 0.15609

160 0.04245 0.03912 3.89 3.99
320 0.01071 0.00971 3.96 4.03
640 0.00269 0.00240 3.98 4.04

Table 1: Experimentally determined order of accuracy using the method of manufactured solution.

A powerful way to verify the correctness of the implementation of any numerical
method is the method of manufactured solution. The method works as follows: postulate
a smooth solution described by functions that are easy to differentiate. In this example
we choose

u=sin(6.2(x−1.3t))sin(6.2y), (4.1)
v=sin(6.2(x−1.2t))sin(6.2y). (4.2)

Insert the postulated solution into the governing equations and the boundary conditions
to determine the external forcing that would give the desired solution (for example, if the
equation was ut+ux = f , then we would set f = 6.2(1−1.3)cos(6.2(x−1.3t))sin(6.2y) in
order to manufacture the solution (4.1)).

The computational domain we considerer is defined by the mapping

x=q+0.05sin(π(r−0.5)), y= r+0.05sin(π(q−0.5)),
(q,r)∈ [0,1]2 .

The surfaces corresponding to q = 0 and r = 0 are free and the surfaces q = 1 and r =
1 are clamped, i.e. Dirichlet boundary conditions are enforced. We choose the Lamé
parameters to be λ = µ = 1 and advanced the solution up to time π/5 with a time step
k=0.1h, were, hr =hq =h=π/N, N=80,160,320,640. At the final time the maximum error
is computed and tabulated in Table 1. From the results we conjecture that the method is
second order accurate.

4.2 Verification: Conservation of discrete energy in three dimensions
The fact that the scheme conserves a discrete energy can be used as another tool to to
verify the correctness of the code. The idea is to use random (but physically valid ρ,λ,µ>
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Figure 2: To the left: Ratio of the randomly chosen P and S - wave velocities on the free surface s=0. In the
middle: The grid on the free surface s=0. The grid is made up of a regular Cartesian grid whose grid-points has
been randomly perturbed. To the right: The difference in the (3D version) discrete energy (3.14) of subsequent
time steps. The discrete energy is conserved to machine precision.

0) data for the initial values, the material parameters and for the grid (we require J >0).
The grid is constructed by first discretizing the 3D unit cube with a grid spacing of

1/40, then the x,y,z coordinates of all regular grid points are perturbed by a uniformly
distributed random variable taking values in [−0.005,0.005]. A plot of the first vertical
grid plane (corresponding to s=0) projected onto the x-y plane can be found in Figure 2.
The Lamé parameters are given by

λ(x,y,z)=1+R10000 , µ(x,y,z)=1+R100 ,

where Rp is a uniformly distributed random variable taking values in [0,p]. A plot of the
point-wise ratio between Cp and Cs can be found in Figure 2. The initial data is prescribed
as uniformly distributed random variables, with a magnitude chosen such that the initial
discrete energy is of order one. Free-surface boundary conditions are imposed on the top
and bottom of the cube and homogeneous Dirichlet conditions are imposed on the rest of
the faces. The solution is advanced up to time 0.1. To the right in Figure 2 the difference
in discrete energy between subsequent time steps is plotted. As can be seen the size of the
difference is at machine precision, thus verifying the correctness of the implementation
and the conservation properties of the method.

4.3 Effects of curvature in a thin wave guide

It is known that the properties of surface waves in solids depend on both the curvature
and the polarization of the displacement field [3]. For certain polarizations and curvature
the group and / or phase velocities of the surface waves increase and for other they de-
crease. These features can be used in nondestructive testing applications to, for example,
determine the effect of change in cross section of free surface wave-guides, see [16].

In this example we consider a problem setup, inspired by the experiments in [16],
consisting of a thin long aluminum wave guide with a slowly varying cross section, see
Figure 3. The material properties of the wave guide are given by λ=70GPa, µ=35GPa,
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Figure 3: The thin wave guide with a small perturbation on the upper side. Note that the scaling of the axis
are very different. The units of the axis are given in meter.

ρ = 2700kg/m3 . The guide is 150 mm long and at the ends it is 2 mm wide. The upper
surface of the wave guide is described by the equation

y(x)=2+e−0.003203(x−75)2 ,

where x and y are given in mm. The rightmost part of the wave guide is clamped and the
other three sides are free.

We are interested in how small wave packages, mainly confined to the free surface,
are affected by the curvature. To create such wave packages we add a time dependent
forcing to the free surface boundary conditions on the boundary to the left. Precisely we
take the boundary conditions to be

[
(2µ+λ)ux +λvy µ(vx +uy)

µ(vx +uy) (2µ+λ)vy +λux

][
q̄x
q̄y

]
=

[
0

5·108 g(t)

]
(4.3)

were

g(t)=sin(2π f t)e−
( t−t0

δ

)2

,
f =5.0MHz, t0 =2µs, δ=0.5µs.

The wave-guide is discretized using a grid consisting of 7502×103 points. Towards
the ends of the grid each cell is approximately a square with side ∼ 20µm while at the
bump the cells are slightly rectangular with a shortest side in the x direction of 20µm. For
the waves induced by the boundary condition (4.3) this discretization gives a resolution
of approximately 20 points per wavelength.

The simulation runs up to time t = 35µs and the solution is saved at some different
time instants. In Figure 4 an overlay contour plot of the magnitude of the solution at
times t=15.9µs, 23.8µs, 31.8µs is shown. Initially the wave packages travel with the same
speed but as the wave guide expands, the wave package along the curved boundary



17

 

 

0.05 0.075 0.1  
−1

0

1

2

3

4
x 10

−3

0.5

1

1.5

2

2.5
x 10

−6

Figure 4: Magnitude of the solution at three time instants, t=15.9µs, 23.8µs, 31.8µs. The upper wave package
is accelerated as it passes the curved section and arrives first to the clamped boundary to the right.

accelerates and moves ahead of the package at the flat boundary, see also Figure 5 for a
close up of the magnitude of the solution along the boundaries.

This experiment illustrates that, even for small changes in curvature, accurate repre-
sentation of the geometry is crucial to obtain the correct results.

4.4 Effects of topography in two dimensions
Curved surfaces, or rather topography, can have significant effects on the ground motions
after a seismic event. To illustrate this we solve a variation of Lamb’s problem on a
domain with a simple topographical feature. The computational domain is composed of
a ”halfspace” x∈ [−20,20] km and y∈ [0,−20] km. In the left part of the halfspace there is
a small mountain whose elevation (in kilometers) is described by the equation

y(x)=0.2exp
(
−

(
x−15.0

0.3

)2
)

.

To separate the effect of curvature from effects from material heterogeneity the halfspace
is assumed to be homogeneous with P-wave velocity Cp = 3.2 km/s, S-wave velocity
Cs =1.8475 km/s and density ρ=2200.0 kg/m3.

At time zero the displacements and velocities are zero and the problem is forced by
adding the following source to the free surface at the top of the domain

[
(2µ+λ)ux +λvy µ(vx +uy)

µ(vx +uy) (2µ+λ)vy +λux

][
r̄x
r̄y

]
=δ(x)δ(y)g(t)

[
r̄x
r̄y

]
,

were the time dependence is given by a Ricker wavelet

g(t)=1013 (2(π f0(t−t0))
2−1)e−(π f0(t−t0))

2
,

and t0 = 1s and f0 = 2 Hz. The domain is discretized with 2001×1001 points and the
solution is advanced using a time step k = 0.004329s for ten seconds. The results of the
simulations can be found in Figure 6. The small mountain in the left part of the halfspace
acts as a scatterer, creating a new family of backscattered P, S and Rayleigh waves. The
amplitude of the reflected Rayleigh wave is quite substantial and clearly illustrates the
important effect of topography.
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Figure 5: From top to bottom: Magnitude of the solution at time 15.9µs, 23.8µs and 31.8µs. Note that the
start and of the horizontal axis are different in the different plots.

4.5 Effects of topography in three dimensions
As a first three dimensional problem we consider an example from [13] (”amplification
of a three-dimensional hill”) with a three dimensional topography. The topography is
described by the hill

z(x,y)=180 exp
(
−

(
x−1040

500

)2
−

(
y−1040

250

)2
)

m, (x,y)∈ [0m,2080m]2 .

The computational domain extends to the depth z(x,y)=−1050m. The medium is homo-
geneous with Vp =3200m/s, Vs =1847.5m/s and ρ=2200kg/m−3. At the bottom u,v and
w prescribed according to:

u(x,y,−1050)=0, v(x,y,−1050)=0,
w(x,y,−1050)=0.5(2(10.2π(t−0.5))2−1)e−(10.2π(t−0.5))2.

At the top surface a free surface boundary condition is imposed and at the other bound-
aries periodic conditions are imposed.

As in [13] the displacements are measured at the surface along the minor axis (in the
y direction). The domain is discretized with 602 grid points in the q and r directions
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(a) Magnitude at time 2.5974s

(b) Magnitude at time 5.1948s

(c) Magnitude at time 7.7922s

Figure 6: Magnitude of the solution at different time instants for the variation of Lamb’s problem described in
§4.4. The color scale is the same in all of the three frames. The small mountain on the left side of the free
surface acts as a scatterer, creating a new family of backscattered P,S and Rayleigh waves.
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Figure 7: Time responses of the v and w components.

and with 303 points in the s direction. In Figure 7 the time responses of the v and w
components are found. As can be seen they agree well with the results depicted in Figure
12 in [13].

4.6 Wave propagation in a thin toroidal shell

As a final example we consider the propagation of waves in a thin toroidal shell with free
surfaces. The toroidal shell is described by the mapping

x(q,r,s)=(R1 +(R2+s∆R)cos(2πr))cos(2πq),
y(q,r,s)=(R1 +(R2+s∆R)cos(2πr))sin(2πq),
z(q,r,s)=(R2 +s∆R)sin(2πr),

(4.4)

where the larger radius is R1 =4, the smaller radius is R2 =1 and the width of the shell is
∆R =0.1. The shell consists of a (non-dimensionalized) homogeneous material with µ=1,
λ=14 and density ρ=1, i.e. Cp =4 and Cs =1.

At time zero the shell is at rest and to induce waves we introduce a forcing in the free
surface boundary condition at the interior shell. That is, at s=0, we impose the boundary
condition



(2µ+λ)ux +λ(vy +wz) µ(vx +uy) µ(wx +uz)
µ(vx +uy) (2µ+λ)vy +λ(ux +wz) µ(wy +vz)
µ(wx +uz) µ(wy +vz) (2µ+λ)wz +λ(ux +vy)






s̄x
s̄y
s̄z


=




f
0
0


,

(4.5)
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were a point force is applied with a Ricker wavelet time dependence, according to,

f =δ(x−x0)δ(y)δ(z)×10000(2(4π(t−1))2−1)e−(4π(t−1))2,

and x0 = R1+R2. Note that the above boundary conditions are stated in Cartesian coor-
dinates (for brevity), in the code we obviously discretize the curvilinear version of (4.5).

Since the shell is very thin compared to its circumference it is a fairly challenging task
to solve this problem. To get a grid with reasonably uniform cells the shell is discretized
with 5081 points in the q-direction, 1315 points in the r-direction and 21 points in the
s-direction. Including ghost points, the total number of grid points amount to about 154
million. With this discretization the solution is advanced up to time 20 using a time step
k = 0.0008135. At various times, snapshots of the solution on the upper half (r∈ [0,0.5])
of the inner shell are saved. Some of these snapshots can be found in Figure 8. As can
be seen already in subfigure (a), there are a lot of waves that bounce between the free
surfaces of the thin shell, generating complicated wave patterns. In the middle of the
picture there is a set of smaller wavefronts of faster waves, and further to the right there is
a stronger more concentrated wave front of slowly moving waves. At time∼8 ( subfigure
(b)) the wave pattern is dominated by the waves with short wave length, the thin wave to
the right has revolved a lap around the shell and is moving to the left. In the next frame
(c) the rightmost wave has emerged from the left and is moving to the right. Further
to the left, most of waves are concentrated to the outermost part of the shell. Finally, in
subfigure (d) the primary wavefront has just focused in the left part of the torus and is
now composed of small localized wave crests.

To get a rough understanding of how well the waves are resolved we plot the solution
along the line A−B (see Figure 8 (d)). The different components of the displacements
are plotted as a functions of the angle in Figure 9 (a). In subfigure (b) a closeup of the
displacements close to the most rapidly varying part of the solution are plotted. Each
marker represent a grid point and as we can see the waves are fairly well resolved.

5 Summary and discussion

A stable and explicit finite difference method for the elastic wave equation in curvilinear
coordinates has been presented. The discretization of the spatial operators in the method
has been shown to be selfadjoint for free-surface, Dirichlet and periodic boundary con-
ditions. The fully discrete version of the method has been shown to conserve a discrete
energy to machine precision.

As stated in the introduction it would be of great interest to develop a higher order
self-adjoint discretization of the elastic wave equation. The possibilities of using summa-
tion by parts techniques to extend the present method to such a high order discretization
is currently under investigation.
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Another minor drawback of the method is due to the fact that the curvilinear for-
mulation of the elastic wave equation contains many more terms then the Cartesian for-
mulation, making the method more expensive than a method on a Cartesian grid. The
remedy to this is to use an overlapping grid approach (see e.g. [5]) where the equations
close to curved boundaries are solved on body fitted curvilinear grids, the equations in
the interior are solved on Cartesian grids and communication between grids are handled
via interpolation.
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A

Expressions for P1,P2,P3,P4 in Lemma 2.
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P3 =
hr
2

Nr

∑
j=1

(
(Jλ)Nq ,j((qx)Nq,juNq−1,j+(qy)Nq,jvNq−1,j)

2

+(Jµ)Nq ,j((qx)Nq,jvNq−1,j+(qy)Nq,juNq−1,j)
2
)

, (A.3)



23

P4 =
hqhr

2
Nr

∑
j=1

(
(Jλ)3/2,j((qx)3/2,jD

q
+u1,j +(qy)3/2,j D

q
+v1,j)

2

+(Jµ)3/2,j((qx)3/2,jDq
+v1,j +(qy)3/2,jDq

+u1,j)
2

+(J2µ)3/2,j(((qx)3/2,j D
q
+u1,j)

2+((qy)3/2,jD
q
+v1,j)

2)
)

. (A.4)

References

[1] Z. Alterman and F. C. Karal. Propagation of elastic waves in layered media by finite differ-
ence methods. Bulletin of the Seismological Society of America, 58(1):367–398, 1968.

[2] Z. Alterman and A. Rotenberg. Seismic waves in a quarter plane. Bulletin of the Seismological
Society of America, 59(1):347–368, 1969.

[3] L.M. Brekhovskikh. Surface waves confined to the curvature of the boundary in solids.
Soviet Physics - Acoustics, 13(4):462–472, 1968.

[4] D. L. Brown. A note on the numerica solution of the wave equation with piecewise smooth
coefficients. Mathematics of Computations, 42(166):369–391, 1984.

[5] G. Chesshire and W. Henshaw. Composite overlapping meshes for the solution of partial
differential equations. Journal of Computational Physics, 90, 1990.

[6] G. C. Cohen. Higher-Order Numerical Methods for Transient Wave Equations. Springer, 2002.
[7] E. Faccioli, F. Maggio, R. Paolucci, and A. Quarteroni. 2d and 3d elastic wave propagation by

a pseudo-spectral domain decomposition method. Journal of Seismology, 1(3):237–251, 1997.
[8] K-A. Feng, C-H. Teng, and M-H. Chen. A pseudospectral penalty scheme for 2d isotropic

elastic wave computations. Journal of Scientific Computing, 33(3):313–348, 2007.
[9] B. Fornberg. The pseudospectral method: Comparisonswith finite differences for the elastic

wave equation. Geophysics, 52(4):483–501, 1987.
[10] A. Ilan and D. Loewenthal. Instability of finite difference schemes due to boundary condi-

tions in elastic media. Geophysical Prospecting, 24, 1976.
[11] Almoga Ilan. Stability of finite difference schemes for the problem of elastic wave propaga-

tion in a quarter plane. Journal of Computational Physics, 29, 1978.
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(a) Magnitude at time 4.06752 (b) Magnitude at time 8.13504

(c) Magnitude at time 12.2026 (d) Magnitude at time 16.2701

Figure 8: The magnitude of the wave field at different times on the upper half of the inner surface in the three
dimensional toroidal shell described by the mapping (4.4).
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(a) The solution along the centerline
A−B (see Figure 8 (d)).
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(b) Zoom in on the most osculating part,
each marker represent a grid point. Even
the steepest waves are fairly well resolved.

Figure 9: The solution along the line A−B (see Figure 8 (d) at time 16.2701


